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Abstract The objective of this study is to produce an observationally based monthly evapotranspiration
(ET) product using the simple water balance equation across the conterminous United States (CONUS). We
adopted the best quality ground and satellite-based observations of the water budget components, i.e., pre-
cipitation, runoff, and water storage change, while ET is computed as the residual. Precipitation data are
provided by the bias-corrected PRISM observation-based precipitation data set, while runoff comes from
observed monthly streamflow values at 592 USGS stream gauging stations that have been screened by
strict quality controls. We developed a land surface model-based downscaling approach to disaggregate
the monthly GRACE equivalent water thickness data to daily, 0.1258 values. The derived ET computed as the
residual from the water balance equation is evaluated against three sets of existing ET products. The similar
spatial patterns and small differences between the reconstructed ET in this study and the other three prod-
ucts show the reliability of the observationally based approach. The new ET product and the disaggregated
GRACE data provide a unique, important hydro-meteorological data set that can be used to evaluate the
other ET products as a benchmark data set, assess recent hydrological and climatological changes, and ter-
restrial water and energy cycle dynamics across the CONUS. These products will also be valuable for studies
and applications in drought assessment, water resources management, and climate change evaluation.

1. Introduction

As one of the major components of the global hydrologic cycle, evapotranspiration (ET) is a complicated
process and composed of evaporation from land surface and water bodies, and transpiration from vegeta-
tion to the atmosphere [Allen et al., 1998]. Evaporation and transpiration processes occur simultaneously
and are difficult to separate [Anderson et al., 2007; Liu et al., 2011; Mallick et al., 2014]. Accurately estimating
actual ET is of great importance because it is a crucial variable in water resources management, agriculture,
and ecology [Khan et al., 2010], and an important process in the fields of hydrology, meteorology and
atmospheric sciences [Chauhan and Shrivastava, 2009].

Several approaches have been developed to estimate actual ET, including meteorology-driven diagnostic
models such as the Penman-Monteith (PM) method [Monteith, 1965], satellite data-driven PM approaches
[Cleugh et al., 2007; Mu et al., 2007; Zhang et al., 2008, 2009, 2010], satellite data-driven Priestly-Taylor empirical
approach [Fisher et al., 2008], energy balance methods [Bastiaanssen et al., 1998; Su, 2002; Wang and Bras,
2009, 2011], vegetation index-ET empirical relationship methods [Gillies et al., 1997; Nishida et al., 2003; Tang
et al., 2009], and data-driven statistical methods [Jung et al., 2010]. The water balance approach is another way
to determine ET by quantifying it as the residual in the water balance equation. This method is simple and
sound in theory, and warrants accurate estimate of ET as long as the other water components can be accu-
rately measured. Additionally, unlike the other approaches, it does not require additional meteorological
inputs except precipitation. One good example for measuring/estimating ET using the water balance
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approach is the lysimeter. The water balance method has been used to estimate ET in previous studies [Long
et al., 2014; Ramillien et al., 2006; Zeng et al., 2012; Zhang et al., 2010], but this approach is usually applied to
one or multiple basins to derive the areal-mean ET of these basins that serve as an ET validation data set.

The recent ET estimates by model simulations and satellite-driven algorithms are usually evaluated against
point FLUXNET eddy covariance measurements [Mu et al., 2007, Velpuri et al., 2013; Zhang et al., 2009] and
simulations from land surface models [Jung et al., 2010; Schwalm et al., 2013]. Few of these studies use
basin-wide ET estimates from water balance computations as benchmark values to evaluate the remotely
sensed ET estimates [Zeng et al., 2012; Zhang et al., 2010]. The water balance-based ET is rarely available,
covers few regions, and has coarse spatial resolution due to the limited data availability and continuity.

To produce a subbasin-wide ET product with continuous temporal coverage and downscaled gridded water
storage change data with a relatively finer spatial resolution (0.1258), we utilized the trustworthy ground
and satellite-observed hydrological data provided by USGS, NASA, and USDA to estimate monthly actual ET
and monthly 0.1258 water storage change data from April 2002 to September 2013 across the conterminous
United States (CONUS). The method developed in this study computes actual ET as the residual in the sim-
ple water balance equation. The objective of this study is to produce an observationally based monthly
evapotranspiration (ET) product using the simple water balance equation across the CONUS. This data set
can be used to evaluate the other ET products as a benchmark data set, assess recent hydrological and cli-
matological changes across the CONUS. These products will be also valuable for studies and applications in
drought assessment, water resources management, and climate change evaluation.

2. Data and Methodology

2.1. Study Area and Data
The spatial domain of this study is the CONUS, ranging from 258N to 508N and from 124.758W to 678W
(Figure 1). The data used in this study include observations of precipitation, runoff, and water storage change
from ground and satellite data, and river network and topographical data from a remote sensing-derived digi-
tal elevation model (DEM). The river network data have a spatial resolution of 0.1258 and were derived from
an upscaled global data set from the combined HydroSHEDS and HYDRO1K datasets [Wu et al., 2012].

The precipitation data are from the PRISM (Parameter-elevation Regressions on Independent Slopes Model)
daily precipitation data set produced by the PRISM group at Oregon State University (http://www.prism.ore-
gonstate.edu). The PRISM daily precipitation product is a 4 km gridded estimate of precipitation for the
CONUS based on observations from a wide range of monitoring networks with sophisticated quality control,
and bias and topography corrections [Daly et al., 2008]. The PRISM interpolation method calculates climate–
elevation regression for each grid cell, and stations entering the regression are assigned weights based pri-
marily on the physiographic similarity of the station to the grid cell. Factors considered are location, eleva-
tion, coastal proximity, topographic facet orientation, vertical atmospheric layer, topographic position, and
orographic enhancement caused by the underlying terrain [Daly et al., 2008]. The PRISM data set is the
source of USDA’s official climatological data. In this study, all analyses were conducted on a geographical
grid with a resolution of 0.1258. Therefore, the PRISM precipitation was first aggregated from 4 km to 0.1258

and then summed from daily values to monthly values.

Monthly mean streamflow observations from all USGS stream gauging stations, which have continuous dis-
charge data between April 2002 and September 2013, were chosen to derive the monthly runoff depth at
the subbasin level. Some of these stations were further screened out if differences between their drainage
areas as provided by USGS metadata and the areas derived from the 0.1258 DEM-based flow accumulation
are larger than 20%. If multiple streamflow measurement stations fall in the same 0.1258 grid cell, only the
station with the largest drainage area was kept for further analysis. The drainage area of each station must
contain at least two 0.1258 grid cells. After the strict screening process, streamflow data from 592 USGS sta-
tions were chosen for further analysis (Figure 1).

Monthly equivalent water thickness (EWT) of water storage is provided by the Gravity Recovery and Climate
Experiment (GRACE) satellite-derived data set. GRACE is a twin-satellite mission launched in March 2002 to
observe the variation of Earth’s gravity field anomalies. GRACE satellites provide information on changes in
the gravity fields, which are controlled primarily by variations in water distribution and are used to derive
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terrestrial water storage change at a spatial resolution of �200,000 km2 [Tapley et al., 2004b]. The latest
GRACE land grid data Release-05 (RL05) released in February 2014 is used in this study. The RL05 is a level-3
GRACE product containing the EWT product in centimeters with a spatial resolution of 18 3 18 [Chambers,
2006]. This gridded data set was converted from sets of spherical harmonic coefficients of the standard
GRACE product describing the monthly variations in Earth’s gravity filed after applying a series of GRACE fil-
ters [Swenson and Wahr, 2006; Wahr et al., 1998, 2006]. Gridded scaling factors are also applied to the
gridded GRACE EWT to minimize the leakage error due to resampling and postprocessing, i.e., the filtering
and smoothing processes [Landerer and Swenson, 2012]. Although GRACE provides an opportunity to better
constrain the water budget equation, it has relatively coarse spatial resolution and suffers periodic data
gaps due to battery management issues and during certain orbit periods (http://grace.jpl.nasa.gov/data/
gracemonthlymassgridsoverview/). To achieve a continuous terrestrial water storage change data with a
spatial resolution of 0.1258, we developed a downscaling approach in which the GRACE data were used to
constrain the water storage thickness simulated by four land surface models (LSMs) from North American
Land Data Assimilation System project phase 2 (NLDAS-2) and correct the bias in the modeled water stor-
age thicknesses. Details of this downscaling method are described in section 2.2.

2.2. Methodology
In this study, we derived monthly areal-mean actual ET on a subbasin level using the water balance equa-
tion by assuming no net groundwater flow across the boundary of a river basin of interest:

Figure 1. Locations of 592 USGS stream gauging stations used in this study and spatial distributions of their corresponding subbasins over
the CONUS; the blank areas are regions without sufficient good-quality observational data.
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ET 5 P 2 R 2 DS 1 e; (1)

where P (mm) is the monthly precipitation; R (mm) is the monthly runoff depth; DS (mm) is the monthly ter-
restrial water storage change, i.e., change in the monthly EWT; and e is an error term. Because the water
budget terms (P, R and DS) are derived from ground and satellite observations, there are some measure-
ment and processing errors in these data sets [Daly et al., 2008; Landerer and Swenson, 2012; Swenson and
Wahr, 2006; Tapley et al., 2004a]. However, quantifying the error for each of the data sets for each subbasin
is impractical, and we assume that the errors are random and small in magnitude relative to the values of
the water balance variables. Therefore, the derived monthly ET values inherit these errors given that they
are computed as the residual. The sources and detailed processing of the three water budget terms used to
compute the ET are described in section 2.1 and the remaining part of this section.
2.2.1. Calculation of Subbasin Runoff Depth
Since many of these USGS streamflow measurement stations are nested within the same parent watersheds
(Figure 1), we first derived the topological relationships among these stations within the same parent basins
from the river network data (i.e., flow direction, flow accumulation area). The drainage areas of all neighbor-
ing upstream stations from a given station were subtracted out from the drainage area of this station so
that each station was attributed to unique contributing areas, i.e., a subbasin associated to a specific station
does not contain or overlap with other subbasins. For example, there are 102 stations in the Missouri river
basin; therefore, the application of the above procedure produces 102 subbasins that do not overlap with
each other (Figure 1).

Missing values exist in some of the 592 USGS stations for different reasons, but these data gaps must be
less than 20% of the total record, else they are removed. Linear interpolation is not a good solution when
the data gap encompasses 2 or more months. This is because linear interpolation can artificially smooth the
fluctuation of monthly discharge values. Instead, we applied an alternative method in which the multiyear
mean value of a missing month (Qm ), the discharge of its nearest month (Qn), and the multiyear mean value
of the nearest month (Qn ) are used to fill the missing value of the missing month (Qm):

Qm5
Qm 3 Qn

Qn
: (2)

In essence, we assume that the ratio of monthly discharge in a missing month to its multiyear mean is equal
to the ratio of monthly discharge in its nearest month to the multiyear mean discharge of the nearest month.

The monthly runoff depth of subbasin i is then computed by the following equation:

Ri5
Qi2

XN

n51
Qn

� �
3T

Ai
31000; (3)

where Ri is the monthly runoff depth of subbasin i (mm); Qi is the monthly discharge at station i (m3 s21);
Qn is the monthly discharge of neighbor upstream station n of station i (m3 s21); N is the total number of
neighbor upstream stations for station i; Ai is the contributing land area of subbasin i (m2); and T is time (s)
in a month.
2.2.2. Downscaling of GRACE Equivalent Water Thickness Data
As we discussed previously, the GRACE data have periodic gaps and a coarse spatial resolution. To utilize
the GRACE data to derive continuous, finer resolution time series of water storage change, we developed a
model-based approach to downscale the GRACE data. First, hourly 0.1258 simulations of the Variable Infiltra-
tion Capacity (VIC), Noah Land Surface Model (Noah), Mosaic, and Sacramento Soil Moisture Accounting
(SAC) models from North American Land Data Assimilation System project phase 2 (NLDAS-2) were used in
this study to estimate daily water thickness of soil water storage across the CONUS. The four models form
the land surface model (LSM) ensemble executed over the CONUS in NLDAS-2 [Xia et al., 2012b]. The VIC
model is a semidistributed grid-based land surface hydrological model, which solves for full water and
energy balances [Liang et al., 1994, 1996]. The Noah model is a community LSM, which simulates soil mois-
ture (both liquid and frozen), soil temperature, skin temperature, snowpack depth, snowpack water equiva-
lent (and hence snowpack density), canopy water content, and the energy flux and water flux terms of the
surface energy balance and surface water balance [Chen et al., 1996; Ek et al., 2003; Koren et al., 1999;
Mitchell et al., 2004]. The Mosaic model was developed for use in NASA’s global climate model and simulates
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energy and energy balance, and soil moisture and temperature [Koster et al., 2000]. Originally formulated as
a lumped conceptual hydrological model, SAC has since been converted into a distributed version and has
adopted some components of the surface-vegetation-atmosphere transfer scheme developed within the
coupled climate modeling community [Koren et al., 2007]. In the NLDAS-2 project, the VIC model is
equipped with three soil layers with a fixed 10 cm top layer and two other layers with spatially varying
thicknesses, while the Noah model has spatially uniform four soil layers with fixed thicknesses of 10, 30, 60,
and 100 cm [Xia et al., 2012b]. Mosaic has three soil layers with thicknesses of 10, 30, and 160 cm, while SAC
has five soil layers to cover a 2 m soil profile [Xia et al., 2012b].

To downscale the GRACE data, we first aggregated four sets of hourly LSM data separately to produce four
sets of daily equivalent water thickness (EWT: mm) data on a 0.1258 grid. The EWT is the integral of water
above and inside the soil column within each grid cell, including surface water and soil water computed in
the four LSMs. However, like many other LSMs, the four NLDAS-2 LSMs do not simulate groundwater fluxes
[Xia et al., 2014; Xia et al., 2012a, 2012b]; thus, the models do not account for changes in groundwater fluxes
such as water depletion and recharge. However, these changes can be captured by the GRACE data over
large spatial extent. We then normalized the daily EWT by its mean value from January 2004 to December
2009 grid cell by grid cell to produce normalized EWT (Si) by following the same normalization procedure
used in the GRACE data (http://grace.jpl.nasa.gov/data/gracemonthlymassgridsoverview/). Considering that
the footprint of GRACE signals is �200,000 km2 (about 48 by 48) [Longuevergne et al., 2010] and the GRACE
data are believed to have large uncertainty for resolutions< its footprint [Long et al., 2014; Longuevergne
et al., 2010], we aggregated the 18 GRACE data to 48 and then downscaled the 48 data to 0.1258 using the
following method. The 0.1258 normalized EWTs from the LSMs were aggregated to 4.08 to match with the
48GRACE grid using area as a weighting factor as:

SM5

X
ðSi 3 aiÞX

ai

5

X
ðSi 3 aiÞ

A
; (4)

where SM (mm) is the 4.08 LSM normalized EWT; ai (m2) is the area of the 0.1258 grid cell i; A (m2) is the total
area of the 4.08 grid cell containing the 0.1258 grid cell i. The difference between the 4.08 LSM normalized
EWT and 4.08 GRACE normalized EWT (SG) represents the bias (B) of the modeled EWT if we treat the GRACE
data as ‘‘truth’’:

B5SM2SG: (5)

The total water volume offset (B3A) between the model and GRACE data were further distributed to the
0.1258 grid using water volume as weight:

bi5

B 3 A 3 Soi 3 aiX
ðSoi 3 aiÞ

ai
5

B 3 A 3 SoiX
ðSoi 3 aiÞ

; (6)

where bi is the bias of the 0.1258 model EWT; and S0i is the prenormalized 0.1258 model EWT. Since the
GRACE data are a monthly composite product and different number of daily measurements are used for dif-
ferent months to calculate monthly values, the bias bi is treated as the bias in the middle of a month. Then
linear interpolation is applied to produce daily bias values for each grid cell. Finally, once the bias bi is sub-
tracted from Si , we can obtain the 0.1258 bias-corrected daily EWT (S’

i ):

S0i5Si2bi: (7)

This downscaling method preserves the accuracy of the GRACE data and provides that the summation of
the 0.1258 bias-corrected EWT over any 48 GRACE grid cell is equal to the original 48 GRACE value at the
same grid cell. Moreover, this downscaling method produces a finer resolution, continuous daily EWT series.
The monthly water storage change (DSm) in month m at grid cell i is derived as the difference between bias-
corrected daily EWT value on the last day of a given month and on the last day of its previous month as:

DSm5S0iðdmÞ2S0iðdm21Þ; (8)

where dm and dm21 are the Julian days of months m and m21, respectively.
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Since we downscaled the GRACE data using the outputs from four LSMs, we correspondingly produced four
sets of 0.1258 DSm and monthly actual ET. The four sets of data form an ensemble. We used the ensemble
mean as the final product. Hereafter, the reconstructed ET and downscaled DSm denotes their ensemble
means except as otherwise noted. To quantify the uncertainty in the reconstructed ET due to difference in
the model outputs, we applied the commonly used ensemble standard deviation (SD), i.e., ensemble
spread, as a metric:

SD5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

M21

XM

m51

ETm2ET
� �2

vuut ; (9)

where

ET 5
1
M

XM

m51

ETm; (10)

and M (54) is the number of ensemble members. Considering that there is only one set of precipitation
and runoff data, the ensemble spread of DS is essentially the same as that of ET according to equation (1).
2.2.3. Evaluation of the Water Balance-Based ET
To evaluate the reconstructed ET values using the subbasin water balance approach, we compared the ET
estimates with three data sets of ET estimations with reported good quality. One ET data set is produced by
a remote sensing driven process-based algorithm [Zhang et al., 2010], the second data set is a data-driven,
upscaled eddy-covariance flux measurements from the global FLUXNET work using a sophisticated machine
learning method [Jung et al., 2010], and the third data set is the MOD16A2 global ET product [Mu et al.,
2011]. All of the three ET data sets are widely assessed and used in the atmospheric and earth sciences com-
munity [Cai et al., 2011; Wang and Alimohammadi, 2012; Zeng et al., 2012], and are treated as benchmark ET
products in some studies [Schwalm et al., 2013; Zeng et al., 2012].

Three statistical variables were used to measure the similarity between the three products, including mean
difference (MD), root mean square difference (RMSD) and the coefficient of determination (R2). The mean
difference is defined as the average difference between the estimates to be evaluated (yi) and the estimates
to be compared against (xi):

MD5

Xn

i51
yi2xið Þ

n
(11)

where n is the sample size. RMSD measures the closeness between two ET products and is defined as:

RMSD5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i51
ðyi2xiÞ2

n

s
(12)

The R2 coefficient is used to evaluate the covariance between the two estimates of ET.

3. Results

3.1. Downscaled Equivalent Water Thickness and its Spatiotemporal Patterns
Figure 2 shows the normalized regional mean EWT values over the CONUS and its twelve hydrologic
regions from April 2002 to September 2013 using the original monthly GRACE data, the original model daily
EWT, and the downscaled daily EWT. Although there are some discrepancies between the GRACE data and
the original ensemble mean of EWT from the NLDAS-2 LSMs, the mean of model results shows a generally
good agreement with the GRACE data in terms of the seasonality and interannual variability (Figure 2). It is
clear that the downscaled daily EWT matches the original GRACE data quite well with the added benefit of
improved resolution using the model-based downscaling technique (Figure 2). The EWT series shows a
clear, consistent seasonality with peak values falling between February and April when snow storage
reaches maximum values and with minimum values around September when air temperatures are high
accompanied by low seasonal precipitation in most hydrological units of the CONUS (Figure 2). It also shows
large interannual variability; the difference between the highest water storage and the lowest water storage
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during the 12 years is about 180 mm, which is equivalent to 1,055 km3 of liquid water. The min-max spreads
of the original model water storage and the downscaled GRACE data (grey areas in Figure 2) are generally
narrow with relatively large spreads in few months in a couple of hydrological regions, e.g., the Northwest
and Southeast regions (Figure 2), indicating that the difference between the NLDAS-2 LSMs water storage
data are subtle in these large regions.

The spatial pattern of the 11 year (April 2002 to March 2013) mean water storage change shows that most
of the CONUS had very small water storage changes (Figure 3a), indicating most of these areas are in a
water storage balanced state. However, some areas in the southern CONUS (e.g., eastern Texas and western
Louisiana) and central Minnesota show negative multiyear water storage change, implying that these areas
have lost water in the past 12 years. The loss of water storage in these areas is largely attributed to ground-
water depletion and recent drought episode [Freshwater Society, 2013; Long et al., 2013]. In contrast, part of
Florida shows a small gain of water storage during the past 11 years (Figure 3a).

3.2. Spatial Patterns of Water Budget Terms in CONUS
Spatial patterns of ground-observed, 11 year mean annual precipitation and annual runoff depth are shown
in Figure 3. The mean annual precipitation displays a clear spatial gradient in which annual precipitation
gradually decreases from the Southeast US to the Midwest and to the Rocky Mountains, and then increases
from the Rocky Mountains to West Coast (Figure 3b). The spatial pattern of runoff depth is very similar to
that of precipitation with a correlation coefficient of 0.84 (P < 0.001); the west and east coasts of the US and
the Southeast have the highest annual runoff, while the Rocky Mountains and the Great Plains have the
lowest annual runoff (Figure 3b). The similarity between the spatial patterns of precipitation and runoff indi-
cates that precipitation is the major controlling factor of runoff.

3.3. Evaluation of Water Balance-Based ET Reconstruction and its Spatial Pattern
Multiyear average annual ET from the ensemble mean of water balance-based reconstructions (ETRecon; Fig-
ure 4a) is compared with the remote sensing-based estimate [Zhang et al., 2010] (ETZhang; Figure 4b), the
data-driven upscaled estimate [Jung et al., 2010] (ETJung; Figure 4c), and the MOD16 ET product (ETMu; Figure

Figure 2. Time series of monthly terrestrial water storage change over CONUS and its twelve hydrologic regions from the original and land surface model-based downscaled GRACE
data from 2002 to 2013; the downscaled data are the ensemble mean, while the grey area denotes the ensemble spread.
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4d). ET estimates from all four meth-
ods show similar spatial patterns. ET is
the highest in the Southeast and
decreases westward and northward,
and reaches its minimum in the inte-
rior of the Intermountain West such as
the deserts in Nevada. ET increases
again from the Intermountain West to
the West coast (Figure 4). Although
ETRecon has a similar pattern as those
of precipitation and runoff, the
correlation coefficient of ETRecon and
precipitation is 0.72 (P< 0.001); i.e.,
weaker than that of runoff and precip-
itation. This is because ET is not only
largely controlled by precipitation but
also impacted by other factors such as
land-cover type, radiation, humidity,
wind speed, temperature, etc.

The uncertainty in the reconstructed
ET resulted from the difference in the
four LSMs outputs is generally small
(Figure 5): the mean ensemble spread
of the reconstructed ET is less than
9 mm/month for 79% of the study
region, and the largest ensemble
spread is less than 30 mm/month.
The regions with relatively large ET
ensemble spread are mainly located
in the coastal areas and part of the
Midwest, while the other regions have
generally small uncertainty spread,
indicating that the four LSMs have
generally compatible spatial patterns
of water storage (Figure 5).

The four sets of ET estimates across
the 592 CONUS subbasins show very
similar spatial gradients (Figure 4),
although some differences can be
noticed. For example, the ETRecon in
this study generally has higher values
than the other three products in the
Southwest (Figure 4). The intercom-
parison between the four ET estimates

show high correlations indicated by the high R2 values (�0.74). The mean difference between these ET esti-
mates for the 592 basins ranges from 6.8 to 96.5 mm yr21 (Figure 6). The RMSD between the four ET esti-
mates varies between 64.4 and 146.3 mm yr21 (Figure 6). It is notable that the ETRecon values show higher
similarity and correlation with ETZhang and ETJung relative to ETMu (Figures 6a–6c). In addition, the ETZhang

and ETJung values are very close to each other and show similar quality. Although the two prior estimates
were produced by different approaches, they used similar climatologies and remote-sensing data [Jung
et al., 2010; Zhang et al., 2010]. This may explain why these two products have very similar results across the
CONUS. The generally close spatial patterns and small differences between the four ET estimates from dif-
ferent approaches indicate the high accuracy and robustness of these ET estimates. In other words, the
water balance-based ET reconstruction conducted in this study is valid.

Figure 3. Spatial patterns of ground and satellite observed multiyear (from April
2002 to March 2013) mean annual (a) ensemble-mean terrestrial water storage
change (DS), (b) precipitation (P), and (c) runoff depth (R).
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To assess the effectiveness of our downscaling method and the importance of monthly terrestrial water
storage change, i.e., the DS term, in the water balance-based ET estimate, we produced two additional sets
of monthly ET records: one is the water balance-based ET reconstruction by resampling the 18 GRACE data
onto the 0.1258 grid using the nearest neighbor method (ETResample), while the other is the ET estimate as
the difference between P and R (ETP-R). It is clear that the ETResample shows substantially poorer agreements
with the three independent ET records than the ETRecon in terms of the scatterplots and the R2 and RMSD
metrics (Figures 7a–7c). This suggests that using the 18 GRACE data without downscaling it to derive subba-
sin level ET, in particular for regions that are less than 18 by 18, will result in additional uncertainty and erro-
neously abnormal results as shown in Figures 7a–7c. In other words, our downscaling method has
effectively disaggregated the coarser GRACE data to finer (0.1258) resolution, resulting in good-quality ET

reconstruction. ETP-R also shows degraded
agreements with the three ET records similar
to ETResample in terms of the R2 and RMSD
metrics (Figures 7d–7f). Like the results of
ETResample, the derived ET by ignoring the DS
term can also result in erroneous and abnor-
mal values such as negative values and erro-
neously high values as shown in Figures 7d–
7f. Therefore, it is important to account for
the DS term in order to provide accurate
monthly ET estimates using the water bal-
ance approach. The downscaling approach
implemented in this study is capable of dis-
aggregating the coarser GRACE EWT to finer
resolution to achieve reasonably good

Figure 4. Spatial patterns of multiyear average annual ET from (a) the ensemble mean of water balance-based reconstructions, (b) a remote sensing-based estimate [Zhang et al., 2010],
(c) the data-driven upscaled estimate [Jung et al., 2010], and (d) the MOD16A2 product [Mu et al., 2011].

Figure 5. Mean ensemble spread of the reconstructed monthly ET.
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estimates of DS for subbasins that are even smaller than the footprint of the GRACE data. It is worthy to
note that ETRecon, ETResample, and ETP-R all have generally higher values than the three independent remote
sensing-based ET products, suggesting that these remote sensing-based ET products may tend to under-
state the actual ET considering these products do not explicitly account for water balance closure and the
effect of P on ET.

Figure 6. Intercomparisons (a) between mean annual ET estimates from the ensemble mean of water balance-based reconstruction (ETRecon) and the remote sensing-based estimate by
Zhang et al. [2010] (ETZhang), (b) between ETRecon and the data-driven upscaled ET estimate by Jung et al. [2010] (ETJung), (c) between ETRecon and the MOD16A2 ET by Mu et al. [2011]
(ETMu), (d) between ETZhang and ETJung, (e) between ETZhang and ETMu, and (f) between ETJung and ETMu across 592 CONUS basins; black solid circles are basin-level mean annual ET, while
grey error bars denotes interannual variability (standard deviation) of basin-level annual ET.

Water Resources Research 10.1002/2015WR017311

WAN ET AL. WATER BALANCE-BASED OBSERVATIONAL ET RECONSTRUCTION 6494



We further investigated the agreement of seasonality among the four ET estimates, the ETRecon and the
three independent ET records, by comparing their 12 year mean monthly profiles. The results show that
all the four ET estimates show similar monthly profiles with peak values in July when solar radiation, tempera-
ture and plant growth reach their peaks, and with minima in January when solar radiation and temperature
reach their minima and most plants are dormant in the CONUS (Figure 8). Despite these similar monthly
profiles, there are some noticeable differences. For example, the ETRecon has generally higher values than the
other three products, especially in the summer months. These differences imply that the existing three

Figure 7. Same as Figure 6, but for (a–c) intercomparison between the water balance-based ET reconstruction by resampling the 18 GRACE data onto the 0.1258 grid (ETResample) and the
three independent ET records, and (d–f) intercomparison between the ET reconstruction by ignoring change in water storage (ETP-R) and the three ET records.
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ET products may tend to underestimate
the actual ET, because the existing ET
products do not explicitly quantify some
hydrological processes such as sublima-
tion and snowmelt that impacts the ET,
and the existing ET products can be also
affected by satellite signal saturation dur-
ing the peak of growing season. It is also
notable that ETMu tends to have lower
seasonal variability than the other prod-
ucts indicated by its higher minimum val-
ues and smaller peak values. In the rest of
the months, ETRecon, ETZhang and ETJung

products have similar values, while ETMu

have generally lower values than the
other products (Figure 8).

4. Conclusion and Discussion

In this study, a new actual ET product
across the CONUS has been derived from
high quality satellite and ground observa-

tions, including the PRISM precipitation data, USGS observed streamflow data, and GRACE water storage
data that has been downscaled using land surface models. This data set covers 73% of the CONUS and is
available from April 2002 to September 2013. To our knowledge, this is the first study that derives decadal,
continuous monthly ET values across the CONUS from observations using the subbasin water balance
method. The method is unique in that it is observationally driven so that ET is computed as the residual in
the water balance equation. This differs from past methods and models that often estimate ET using
approximate methods and then compute the storage term as the residual in the water balance. The wide
availability and accuracy of the GRACE observations enabled us to adopt a new approach in the terms of
the water balance equation. The new ET product derived in this study shows high similarity with two exist-
ing, high quality ET products across the CONUS, indicating the reliability of the approach. Since the new ET
product is derived from observations, it can be regarded as a benchmark data set to evaluate the existing
and new model-based ET products. Moreover, we downscaled the GRACE data with the aid of four LSMs to
produce a continuous daily equivalent water thickness data set with a spatial resolution of 0.1258 and con-
verted the USGS observed streamflow data to runoff depth. All the above products can serve as important
hydro-meteorological data sets for assessment of hydrological and climatological changes, and evaluation
of terrestrial water and energy cycle dynamics across the CONUS. These products will be also valuable for
studies and applications in drought assessment, water resources management, climate change evaluation,
and so on.

Although this new ET product is derived from ground and satellite observations, there are several limita-
tions with this approach and the product. Further study is needed to thoroughly address these limitations.
First, the reconstructed ET from the water balance method is a basin-mean product and correspondingly
has variable spatial resolutions depending on the area of each individual subbasin. For example, the area of
the 592 basins in this study ranges from 292 to 303,700 km2. To produce gridded data, physical, or statistical
methods need be developed to disaggregate the areal-average ET to individual grid cells; the distributed
hydrologic models and land surface models may be useful for this.

Second, the ET reconstruction method does not account for the impacts of water transfer in or out of the
subbasins by human activities such as irrigation and interbasin water diversions; therefore, the ET estimates
in these areas heavily impacted by these human activities may have higher uncertainty. We derived a map
showing these subbasins which have at least 10% of area controlled or affected by reservoirs and other
human activities such as urbanization, mining, agricultural changes, and channelization using the USGS
streamflow qualification codes for peak streamflow (http://nwis.waterdata.usgs.gov/nwis). 245 of the 592

Figure 8. Comparison of mean monthly profile of actual ET from the ensemble
mean of water balance-based reconstructions, remote sensing-based estimate
[Zhang et al., 2010], data-driven upscaled estimate [Jung et al., 2010] and
MOD16A product [Mu et al., 2011].
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basins have more than 10% area con-
trolled by reservoirs, while 3 basins
have more than 10% impervious cover
due to urbanization, mining, agricul-
tural changes, channelization, or other
anthropogenic activities (Figure 9).
These basins impacted by human activ-
ities are largely located in the Midwest
(Figure 9). The stream flow interruption
caused by human activities do not
impact the water balance-based ET
reconstruction as long as no significant
amount of water is diverted to another
basin, because the ET in this study is
derived on the basin level. However,
the interbasin transfer of water defi-

nitely can cause large errors in the water balance-based ET calculation. It is impractical for us to quantify the
impact of the interbasin transfer in this study due to lack of data. The general similar spatial patterns
between ET derived in this study and the other three ET products from remote sensing and upscaled flux
tower data in these basins impacted by human activities suggest that most of these basins do not experi-
ence substantial interbasin transfer of water (Figures 4 and 9).

Third, the ET estimate is directly calculated as the residual of all other water budget terms and inherits
the measurement and processing errors in all other water budget terms. For example, some studies
shows that the GRACE water thickness data can have an error of 2–3 cm [Landerer and Swenson, 2012].
Although the evaluation of the PRISM precipitation shows a near zero bias over the CONUS but may have
relatively larger errors in some regions [Daly et al., 2008]. Finally, the availability of the ET reconstruction
using this approach is limited by the availability of the measurements of the other water budget terms.
However, the observation-based ET estimate in this study presents a best available ET estimate from the
high quality observations. Therefore, there is strong reason to believe that this ET estimate is close to the
‘‘truth.’’
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